منحنى إهليلجي عام على حقل ذو خاصية حقل ، منحنى عام مكعب
(1)
|
حيث ، ، ... ، هي عناصر ، يمكن كتابتها في النموذج
(2)
|
حيث لا يحتوي الجانب الأيمن من ( 2 ) على عوامل متكررة. يمكن أيضًا كتابة أي منحنى إهليلجي ليس بخاصية 2 أو 3 في شكل Legendre العادي
(3)
|
(Hartshorne 1999).
يتم توضيح المنحنيات الاهليلجية أعلاه لمختلف القيم و .
(4)
|
( لا يمكن استبعاد المصطلح). إذا ديه حقل مميزة اثنين، ثم يزداد الوضع سوءا. ويسمى الشكل العام الذي يمكن من خلاله تحويل المنحنى البيضاوي فوق أي شكل Weierstrass ، ويعطى من قبل
(5)
|
في حين أن المقاطع المخروطية يمكن أن تكون معلمة بالوظائف العقلانية ، لا يمكن منحنيات إهليلجية. أبسط وظائف المعلمة هي الدوال الاهليلجية . يمكن اعتبار أصناف أبيليان تعميمات للمنحنيات الإهليلجية.
إذا كان الحقل الأساسي لمنحنق إهليلجي مغلقًا جبريًا ، فسيقوم الخط المستقيم بتقطيع منحنى إهليلجي عند ثلاث نقاط (عد الجذور المتعددة عند نقاط التماس). إذا كان من المعروف اثنين ، فمن الممكن لحساب الثالث. إذا كان اثنان من نقاط التقاطع هي - عقلانية ، حتى ذلك الحين هو الثالث. أثبت Mazur و Tate (1973/1974) أنه لا يوجد منحنى إهليلجي لوجود نقطة عقلانية 13.
(6)
|
مرضيه
(7)
|
(8)
|
الآن حدد
(9)
|
ثم إحداثيات النقطة الثالثة هي
(10)
| |||
(11)
|
بالنسبة للمنحنيات الإهليلجية ، أثبت موردل وجود عدد محدود من الحلول المتكاملة. و نظرية Mordell-ويل تقول إن مجموعة من النقاط عقلانية من المنحنى البيضاوي على تتولد بشكل محدود. السماح لل جذورمن تكون ، و . المميّز إذن
(12)
|
ليست هناك تعليقات:
إرسال تعليق